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Uzawa Algorithm
Recall the optimization problem with only the inequality constraints:

P = inf
g1(x)≤0

...
gn(x)≤0

f(x) (P)

Condition:

1. f, g1, . . . , gm are convex functions

2. Hess(f) ≥ αIn

3. g1, . . . , gm are C-Lipschitz

4. η ∈
(
0,

2α

C2

)
and its dual problem is given by

D = max
λ∈Rm

+

d(λ),

where d(λ) = inf
x∈Rn

(
f(x) +

m∑
i=1

λigi(x)

)
.

Recall that under Slater condition (i.e. ∃x̂ such that gi(x̂) < 0, ∀i = 1, . . . ,m), we have

• P = D

• there exists λ∗ ∈ Rm
+ such that d(λ∗) = f(x∗) +

∑
λ∗
i gi(x

∗) = D

and the main algorithm Uzawa Algorithm:

λk+1 = ΠRm
+

(
λk + η∇d(λk)

)
= ΠRm

+

(
λk + ηg(xk)

)
where ΠRm

+
denotes the projection onto Rm

+ , and xk := argmin
x∈Rn

(
f(x) +

∑
λk
i gi(x)

)
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Lemma 1. From the Uzawa algorithm, we always have λ∗ = ΠRm
+
(λ∗ + ηg(x∗))

Proof. From d(λ∗) = min
λ∈Rm

+

d(λ), we have

0
KKT theorem

=
m∑
i=1

λ∗
i gi(x

∗) ≥
m∑
i=1

λigi(x
∗)

This means that
m∑
i=1

(λ∗
i − λi)gi(x

∗) ≥ 0 ⇐⇒ ⟨λ∗ − λ, g(x∗)⟩ ≥ 0

=⇒ ⟨λ∗ − λ, λ∗ − (λ∗ + ηg(x∗))⟩ ≤ 0, ∀λ ∈ Rm
+

=⇒ λ∗ = ΠRm
+
(λ∗ + ηg(x∗))

Theorem 2. Under the above conditions , there exists a unique optimal solution to (P ) and xk → x∗

as k → +∞.

Proof. 1. To prove there exists there is unique x∗, it is exactly the same as the last theorem since
f is coercive.

2. Consider

∥λk+1 − λ∗∥2 = ∥ΠRm
+
(λk + ηg(xk))− ΠRm

+
(λ∗ + ηg(x∗)) ∥2

≤ ∥λk + ηg(xk)− (λ∗ + ηg(x∗)) ∥2

≤ ∥λk − λ∗∥2 + 2η
〈
λk − λ∗, g(xk)− g(x∗)

〉
+ η2∥g(xk)− g(x∗)∥2

Since we assume g1, . . . , gm are Lipschitz, so the last term we have

∥g(xk)− g(x∗)∥ ≤ C∥xk − x∗∥

Moreover, by the Euler’s first order condition, we have{
∇f(x∗) + ⟨λ∗,∇g(x∗)⟩ = 0

∇f(xk) +
〈
λk,∇g(xk)

〉
= 0

Taking differencing of the above two equations gives

∇f(x∗)−∇f(xk) + ⟨λ∗,∇g(x∗)⟩ −
〈
λk,∇g(xk)

〉
= 0

Moreover, recall
〈
∇f(x∗)−∇f(xk), x∗ − xk

〉
≥ α∥x∗ − xk∥2 as Hess(f) ≥ αIn. Combining

the above equality and the inequality, we have
m∑
i=1

λ∗
i

〈
∇gi(x

∗), xk − x∗〉︸ ︷︷ ︸
≤gi(xk)−gi(x∗)

+
m∑
i=1

λk
i

〈
∇gi(x

k), x∗ − xk
〉︸ ︷︷ ︸

≤gi(x∗)−gi(xk)

≥ α∥x∗ − xk∥2

and the above bounds are followed by the convexity of gi. Therefore, we have
m∑
i=1

λ∗
i (gi(x

k)− gi(x
∗)) +

m∑
i=1

λk
i (gi(x

k)− gi(x
k)) ≥ α∥x∗ − xk∥2

m∑
i=1

(λ∗
i − λk

i )
(
gi(x

k)− gi(x
∗)
)
≥ α∥x∗ − xk∥2〈

λ∗ − λk, g(xk)− g(x∗)
〉
≥ α∥x∗ − xk∥2
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Putting all together back to the top inequality, we have

∥λk+1 − λ∗∥2 ≤ ∥λk − λ∗∥2 + 2η
〈
λk − λ∗, g(xk)− g(x∗)

〉
+ η2∥g(xk)− g(x∗)∥2

≤ ∥λk − λ∗∥2 + 2η(−2ηα∥x∗ − xk∥2) + η2C2∥xk − x∗∥2

= ∥λk − λ∗∥2 +
(
η2C2 − 2ηα

)
∥xk − x∗∥2

So, we can deduce that

1⃝ k 7→ ∥λk − λ∗∥ ≥ 0 is decreasing, hence converges.
So by Cauchy criterion, we can deduce that ∥λk+1 − λ∗∥ − ∥λk − λ∗∥ → 0 as k → +∞

2⃝ ∥xk − x∗∥2 ≤ 1

η2C2 − 2ηα

(
∥λk+1 − λ∗∥2 − ∥λk − λ∗∥2

)
→ 0

— End of Lecture 23 —
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